Mahalo no kou kipa ʻana iā Nature.com.Ke hoʻohana nei ʻoe i kahi polokalamu kele pūnaewele me ke kākoʻo CSS palena ʻole.No ka ʻike maikaʻi loa, manaʻo mākou e hoʻohana i kahi polokalamu kele pūnaewele hou (a i ʻole e hoʻopau i ke ʻano Compatibility Mode ma Internet Explorer).Eia kekahi, e hōʻoia i ke kākoʻo mau, hōʻike mākou i ka pūnaewele me ka ʻole o nā styles a me JavaScript.
Ua noiʻi mākou i ka hopena o kahi ʻili kikoʻī ma nā waiwai electrochemical o NiCo2O4 (NCO) no ka ʻike glucose.NCO nanomaterials me ka mana kiko'ī ili wahi i hanaia e ka hydrothermal synthesis me nā mea hoʻohui, a me ka hoʻohui pū ʻana i nā nanostructures me ka hedgehog, pine nila, tremella a me ka pua e like me ka morphology.Aia ka mea hou o kēia ʻano i ka mana ʻōnaehana o ke ala hopena kemika ma ka hoʻohui ʻana i nā mea hoʻohui like ʻole i ka wā synthesis, kahi e alakaʻi ai i ka hoʻokumu ʻana o nā morphologies like ʻole me ka ʻole o ka ʻokoʻa i ka ʻano kristal a me ke kūlana kemika o nā mea constituent.Ke alakaʻi nei kēia mana morphological o NCO nanomaterials i nā loli nui i ka hana electrochemical o ka ʻike glucose.I ka hui pū ʻana me ka ʻike ʻana i nā mea, ua kūkākūkā ʻia ka pilina ma waena o ka ʻili a me ka hana electrochemical no ka ʻike glucose.Hiki i kēia hana ke hāʻawi i ka ʻike ʻepekema i ka hoʻoponopono ʻana i ka ʻili o nā nanostructure e hoʻoholo i kā lākou hana no nā noi kūpono i nā biosensors glucose.
Hāʻawi nā pae glucose koko i ka ʻike koʻikoʻi e pili ana i ke kūlana metabolic a physiological o ke kino1,2.No ka laʻana, hiki i nā pae maʻamau o ka glucose i ke kino ke hōʻailona koʻikoʻi o nā pilikia olakino koʻikoʻi, e like me ka maʻi diabetes, ka maʻi cardiovascular, a me ka momona3,4,5.No laila, he mea nui ka nānā mau ʻana i ke kō koko koko no ka mālama ʻana i ke olakino maikaʻi.ʻOiai ua hōʻike ʻia nā ʻano ʻano like ʻole o ka glucose e hoʻohana ana i ka ʻike physicochemical, ʻo ka haʻahaʻa haʻahaʻa a me nā manawa pane lohi e mau i nā pale i nā ʻōnaehana hoʻomau glucose hoʻomau 6,7,8.Eia kekahi, ʻo nā mea ʻike koko electrochemical kaulana i kēia manawa e pili ana i nā hopena enzymatic aia nō kekahi mau palena ʻoiai ko lākou pono o ka pane wikiwiki, ʻike kiʻekiʻe a me nā kaʻina hana hana maʻalahi9,10.No laila, ua aʻo nui ʻia nā ʻano like ʻole o nā mea ʻike electrochemical non-enzymatic e pale i ka denaturation enzyme ʻoiai e mālama ana i nā pono o nā biosensors electrochemical9,11,12,13.
ʻO nā pūhui metala hoʻololi (TMCs) loaʻa kahi hana catalytic kiʻekiʻe e pili ana i ka glucose, kahi e hoʻonui ai i ke ʻano o kā lākou noi i nā sensors glucose electrochemical13,14,15.I kēia manawa, ua manaʻo ʻia nā manaʻo noʻonoʻo like ʻole a me nā ʻano maʻalahi no ka synthesis o TMS e hoʻomaikaʻi hou i ka naʻau, ke koho, a me ke kūpaʻa electrochemical o ka ʻike glucose16,17,18.No ka laʻana, ʻo nā ʻokikene metala hoʻololi ʻole e like me ka copper oxide (CuO)11,19, zinc oxide (ZnO)20, nickel oxide (NiO)21,22, cobalt oxide (Co3O4)23,24 a me ka cerium oxide (CeO2) 25. hana electrochemical e pili ana i ka glucose.ʻO nā holomua hou i nā oxides metala binary e like me ka nickel cobaltate (NiCo2O4) no ka ʻike glucose ua hōʻike i nā hopena synergistic hou aʻe e pili ana i ka hoʻonui ʻana i ka hana uila26,27,28,29,30.ʻO ka mea nui, ʻo ka haku mele a me ka mana morphology e hoʻokumu i ka TMS me nā nanostructures like ʻole hiki ke hoʻonui i ka ʻike ʻike ma muli o ko lākou ʻāpana ākea nui, no laila ua manaʻo nui ʻia e hoʻomohala i ka morphology controlled TMS no ka hoʻomaikaʻi ʻana i ka glucose detection20,25,30,31,32, 33.34, 35.
Maʻaneʻi mākou e hōʻike nei i nā nanomaterials NiCo2O4 (NCO) me nā morphologies like ʻole no ka ʻike glucose.Loaʻa nā NCO nanomaterials e kahi ʻano hydrothermal maʻalahi me ka hoʻohana ʻana i nā mea hoʻohui like ʻole, ʻo nā mea hoʻohui kemika kekahi o nā kumu nui i ka hui pū ʻana o nā nanostructures o nā ʻano morphologies.Ua noiʻi ʻōnaehana mākou i ka hopena o nā NCO me nā morphologies ʻokoʻa i kā lākou hana electrochemical no ka ʻike glucose, me ka naʻau, ka koho, ka palena ʻike haʻahaʻa, a me ke kūpaʻa lōʻihi.
Hoʻopili mākou i nā nanomaterials NCO (pōkole UNCO, PNCO, TNCO a me FNCO i kēlā me kēia) me nā microstructures e like me nā urchins kai, nā nila pine, tremella a me nā pua.Hōʻike ka Kiʻi 1 i nā ʻano ʻano like ʻole o UNCO, PNCO, TNCO, a me FNCO.Ua hōʻike ʻia nā kiʻi SEM a me nā kiʻi EDS ua māhele like ʻia ʻo Ni, Co, a me O i nā nanomaterials NCO, e like me ka hōʻike ʻana ma nā Kiʻi 1 a me 2. S1 a me S2.Ma ka fig.2a, b hōʻike i nā kiʻi TEM ʻelele o nā nanomaterials NCO me ka morphology ʻokoʻa.ʻO UNCO kahi microsphere hoʻohui ponoʻī (diameter: ~5 µm) i haku ʻia me nā nanowires me nā nanoparticles NCO (ka nui o ka nui o ka nui: 20 nm).Manaʻo ʻia kēia microstructure kūʻokoʻa e hāʻawi i kahi ākea ākea e hoʻomaʻamaʻa i ka diffusion electrolyte a me ka lawe electron.ʻO ka hoʻohui ʻana o ka NH4F a me ka urea i ka wā synthesis ua loaʻa i kahi microstructure acicular mānoanoa (PNCO) 3 µm ka lōʻihi a me 60 nm ākea, i haku ʻia me nā nanoparticles nui aʻe.ʻO ka hoʻohui ʻana o HMT ma kahi o NH4F ka hopena i kahi tremello-like morphology (TNCO) me nā nanosheets wrinkled.ʻO ka hoʻokomo ʻana o NH4F a me HMT i ka wā synthesis e alakaʻi i ka hōʻuluʻulu ʻana o nā nanosheets wrinkled pili, e hopena i kahi morphology like-pua (FNCO).ʻO ke kiʻi HREM (Fig. 2c) hōʻike i nā pūnaʻi maʻi ʻokoʻa me nā spacing interplanar o 0.473, 0.278, 0.50, a me 0.237 nm, e pili ana i nā mokulele (111), (220), (311), a me (222) NiCo2O4, s 27 .Ua hoʻopaʻa pū ʻia ke ʻano polycrystalline o NiCo2O4 o NCO nanomaterials (i hoʻokomo ʻia i ka Fig. 2b).Hōʻike nā hopena o ke kiʻi ʻeleʻele annular kiʻekiʻe (HAADF) a me ka palapala palapala EDS i ka māhele like ʻana o nā mea āpau i ka nanomaterial NCO, e like me ka hōʻike ʻana ma ka Fig. 2d.
Hōʻike schematic o ke kaʻina hana o ka NiCo2O4 nanostructures me ka morphology hoʻomalu.Hōʻike pū ʻia nā Schematics a me nā kiʻi SEM o nā nanostructure like ʻole.
ʻO ke ʻano moʻokalaleo a me ke ʻano o nā nanomaterials NCO: (a) kiʻi TEM, (b) kiʻi TEM me ke ʻano SAED, (c) kiʻi HRTEM i hoʻoholo ʻia i ka grating a me nā kiʻi HADDF pili o Ni, Co, a me O i (d) NCO nanomaterials..
Hōʻike ʻia nā hiʻohiʻona ʻokoʻa X-ray o nā nanomaterial NCO o nā morphologies like ʻole ma Fig.3a.ʻO ka piʻi ʻana o ka diffraction ma 18.9, 31.1, 36.6, 44.6, 59.1 a me 64.9° e hōʻike ana i nā mokulele (111), (220), (311), (400), (511) a me (440) NiCo2O4, kēlā me kēia, he cubic. spinel structure (JCPDS No. 20-0781) 36. Hōʻike ʻia ka spectra FT-IR o nā nanomaterials NCO ma Fig.3b.ʻElua mau puʻupuʻu haʻalulu ikaika ma ka ʻāpana ma waena o 555 a me 669 cm–1 e pili ana i ka oxygen metala (Ni a me Co) i huki ʻia mai nā kūlana tetrahedral a me ka octahedral o ka spinel NiCo2O437, kēlā me kēia.No ka hoʻomaopopo maikaʻi ʻana i nā waiwai o ka NCO nanomaterials, ua loaʻa ʻo Raman spectra e like me ka mea i hōʻike ʻia ma ke kiʻi 3c.ʻO nā piko ʻehā i ʻike ʻia ma 180, 459, 503, a me 642 cm-1 pili i nā ʻano Raman F2g, E2g, F2g, a me A1g o ka spinel NiCo2O4, kēlā me kēia.Ua hana ʻia nā ana XPS no ka hoʻoholo ʻana i ke kūlana kemika o ka ʻili o nā mea i loko o nā nanomaterials NCO.Ma ka fig.Hōʻike ka 3d i ka spectrum XPS o UNCO.ʻO ka spectrum o Ni 2p he ʻelua mau piko nui i loaʻa i ka ikehu hoʻopaʻa ʻana o 854.8 a me 872.3 eV, e pili ana iā Ni 2p3/2 a me Ni 2p1/2, a me ʻelua mau ukali vibrational ma 860.6 a me 879.1 eV.Hōʻike kēia i ka noho ʻana o Ni2+ a me Ni3+ oxidation states ma NCO.ʻO nā piko ma kahi o 855.9 a me 873.4 eV no Ni3+, a ʻo nā piko ma kahi o 854.2 a me 871.6 eV no Ni2+.Pēlā nō, hōʻike ʻia ka spectrum Co2p o ʻelua spin-orbit doublets i nā piko hiʻona no Co2+ a me Co3+ ma 780.4 (Co 2p3/2) a me 795.7 eV (Co 2p1/2).Kūlike nā piko ma 796.0 a me 780.3 eV me Co2+, a me nā piko ma 794.4 a me 779.3 eV pili me Co3+.Pono e hoʻomaopopoʻiaʻo ka polyvalent state of metal ions (Ni2 + / Ni3 + a me Co2 + / Co3 +) ma NiCo2O4 e hoʻonui i ka hoʻonui i ka hana electrochemical37,38.Ua hōʻike ka Ni2p a me Co2p spectra no UNCO, PNCO, TNCO, a me FNCO i nā hopena like, e like me ka hōʻike ʻana ma ka fig.S3.Eia kekahi, ua hōʻike ka spectra O1s o nā mea nanomaterial NCO a pau (Fig. S4) i ʻelua peaks ma 592.4 a me 531.2 eV, i hui pū ʻia me nā mea hoʻopaʻa metala-oxygen a me ka oxygen ma nā hui hydroxyl o ka ʻili NCO, kēlā me kēia39.ʻOiai ua like nā hale o nā nanomaterials NCO, ʻo nā ʻokoʻa morphological i nā mea hoʻohui e hōʻike ana e hiki i kēlā me kēia mea hoʻohui ke komo ʻokoʻa i nā hopena kemika e hana i ka NCO.Mālama kēia i ka nucleation maikaʻi loa a me ka ulu ʻana o ka palaoa, a laila e hoʻomalu i ka nui o nā ʻāpana a me ka pae o ka agglomeration.No laila, hiki ke hoʻohana ʻia ka mana o nā ʻāpana kaʻina hana like ʻole, me nā mea hoʻohui, ka manawa pane, a me ka mahana i ka wā synthesis, e hoʻolālā i ka microstructure a hoʻomaikaʻi i ka hana electrochemical o NCO nanomaterials no ka ʻike glucose.
(a) X-ray diffraction pattern, (b) FTIR a me (c) Raman spectra o NCO nanomaterials, (d) XPS spectra o Ni 2p a me Co 2p mai UNCO.
ʻO ka morphology o nā nanomaterials NCO i hoʻololi ʻia e pili kokoke ana i ka hoʻokumu ʻana i nā pae mua i loaʻa mai nā mea hoʻohui like ʻole i hōʻike ʻia ma ke Kiʻi S5.Eia hou, X-ray a me Raman spectra o hou hoomakaukau laana (Figures S6 a me S7a) hoike i ke komo ana o ka likeʻole kemika additives hopena i crystallographic okoa: Ni a me Co carbonate hydroxides ua nui nānā 'ia i loko o ke kai urchins a me ka pine kui kui. ʻO nā hale i ke ʻano o ka tremella a me ka pua e hōʻike ana i ka hiki ʻana o ka nickel a me ka cobalt hydroxides.Hōʻike ʻia ka FT-IR a me XPS spectra o nā laʻana i hoʻomākaukau ʻia ma nā Kiʻi 1 a me 2. Hōʻike pū ʻia ʻo S7b-S9 i nā hōʻike maopopo o nā ʻokoʻa crystallographic i ʻōlelo ʻia.Mai nā waiwai waiwai o nā laʻana i hoʻomākaukau ʻia, ua akaka ke komo ʻana o nā mea hoʻohui i nā hopena hydrothermal a hāʻawi i nā ala ʻano like ʻole e loaʻa ai nā pae mua me nā morphologies40,41,42.ʻO ka hui pū ʻana o nā morphologies like ʻole, ʻo ia hoʻi nā nanowires hoʻokahi-dimensional (1D) a me ʻelua-dimensional (2D) nanosheets, ua wehewehe ʻia e ke kūlana kemika ʻokoʻa o nā pae mua (Ni a me Co ions, a me nā pūʻulu hana). ukali ʻia e ka ulu kristal42, 43, 44, 45, 46, 47. I ka wā o ka hoʻoili ʻana ma hope o ka wela, ua hoʻololi ʻia nā ʻāpana mua like ʻole i NCO spinel me ka mālama ʻana i kā lākou morphology kūikawā, e like me ka mea i hōʻike ʻia ma nā Kiʻi 1 a me 2. 2 a me 3a.
Hiki i nā ʻokoʻa morphological i nā nanomaterials NCO ke hoʻoikaika i ka ʻāpana electrochemically active no ka ʻike glucose, a laila e hoʻoholo ai i nā hiʻohiʻona electrochemical holoʻokoʻa o ka sensor glucose.Ua hoʻohana ʻia ka N2 BET adsorption-desorption isotherm e hoʻohālikelike i ka nui o ka pore a me kahi kikoʻī kikoʻī o nā nanomaterials NCO.Ma ka fig.Hōʻike ka 4 i nā isotherms BET o nā mea nano NCO like ʻole.ʻO ka BET kikoʻī ili wahi no UNCO, PNCO, TNCO a me FNCO i manaʻo ʻia ma 45.303, 43.304, 38.861 a me 27.260 m2/g.Loaʻa iā UNCO ka ʻāpana BET kiʻekiʻe loa (45.303 m2 g-1) a me ka nui o ka pore nui (0.2849 cm3 g-1), a he haiki ka puʻunaue nui.Hōʻike ʻia nā hualoaʻa BET no nā nanomaterials NCO ma ka Papa 1. Ua like loa ka N2 adsorption-desorption curves me ke ʻano IV isothermal hysteresis loops, e hōʻike ana he mesoporous structure48 nā laʻana a pau.ʻO nā UNCO Mesoporous me ka ʻāina kiʻekiʻe loa a me ka nui o ka pore nui e manaʻo ʻia e hāʻawi i nā wahi hana he nui no ka redox reactions, e alakaʻi ana i ka hoʻomaikaʻi ʻana i ka hana electrochemical.
Nā hualoaʻa BET no (a) UNCO, (b) PNCO, (c) TNCO, a me (d) FNCO.Hōʻike ka inset i ka puʻunaue nui o ka pore.
Ua loiloi ʻia nā hopena redox electrochemical o nā nanomaterials NCO me nā morphologies like ʻole no ka ʻike glucose me ka hoʻohana ʻana i nā ana CV.Ma ka fig.Hōʻike ʻo 5 i nā pihi CV o nā nanomaterials NCO i 0.1 M NaOH alkaline electrolyte me ka ʻole o ka glucose 5 mM ma kahi helu scan o 50 mVs-1.I ka loaʻa ʻole o ka glucose, ua ʻike ʻia nā kiʻekiʻe redox ma 0.50 a me 0.35 V, e pili ana i ka oxidation e pili ana me M-O (M: Ni2+, Co2+) a me M*-O-OH (M*: Ni3+, Co3+).me ka hoʻohana ʻana i ka anion OH.Ma hope o ka hoʻohui ʻana o 5 mM glucose, ua hoʻonui nui ʻia ka hopena redox ma luna o ka ʻili o nā nanomaterials NCO, ʻo ia paha ma muli o ka hoʻohemo ʻana o ka glucose i ka gluconolactone.Hōʻike ka Kiʻi S10 i nā au redox kiʻekiʻe ma nā helu scan o 5-100 mV s-1 ma 0.1 M NaOH solution.Akaka ka piʻi ʻana o ka redox kiʻekiʻe me ka hoʻonui ʻana i ka helu scan, e hōʻike ana i nā nanomaterials NCO i like ka diffusion controlled electrochemical behavior50,51.E like me ka mea i hōʻike ʻia ma ke Kiʻi S11, ua manaʻo ʻia ka ʻāpana electrochemical surface (ECSA) o UNCO, PNCO, TNCO, a me FNCO he 2.15, 1.47, 1.2, a me 1.03 cm2.Hōʻike kēia i ka pono o UNCO no ke kaʻina electrocatalytic, e hoʻomaʻamaʻa i ka ʻike ʻana o ka glucose.
ʻO nā pihi CV o (a) UNCO, (b) PNCO, (c) TNCO, a me (d) FNCO electrodes me ka ʻole o ka glucose a hoʻohui ʻia me 5 mM glucose ma ka helu scan o 50 mVs-1.
Ua noiʻi ʻia ka hana electrochemical o NCO nanomaterials no ka ʻike glucose a ua hōʻike ʻia nā hopena ma ka Fig. V me ka manawa o 60 s.E like me ka hoike ana ma ka fig.6a–d, NCO nanomaterials hōʻike i nā ʻano like ʻole mai ka 84.72 a i ka 116.33 µA mM-1 cm-2 me nā coefficients correlation kiʻekiʻe (R2) mai 0.99 a i 0.993.Hōʻike ʻia ka ʻōkuhi calibration ma waena o ka glucose a me ka hopena o kēia manawa o nā nanomaterials NCO i ka fig.S12.ʻO nā palena i helu ʻia o ka ʻike (LOD) o nā nanomaterials NCO aia ma ka laulā o 0.0623–0.0783 µM.Wahi a nā hopena o ka hoʻokolohua CA, ua hōʻike ʻo UNCO i ka ʻike kiʻekiʻe loa (116.33 μA mM-1 cm-2) ma kahi ākea ākea.Hiki ke wehewehe ʻia kēia e kona ʻano ʻano like ʻole o ke kai, ʻo ia hoʻi kahi ʻano mesoporous me kahi ʻāpana kiko kikoʻī nui e hāʻawi ana i nā wahi ʻoi aku ka nui o nā ʻano glucose.ʻO ka hana electrochemical o nā nanomaterials NCO i hōʻike ʻia ma ka Papa S1 e hōʻoia i ka maikaʻi o ka hana ʻike electrochemical glucose o nā nanomaterials NCO i hoʻomākaukau ʻia ma kēia haʻawina.
ʻO nā pane CA o UNCO (a), PNCO (b), TNCO (c), a me FNCO (d) electrodes me ka glucose i hoʻohui ʻia i ka 0.1 M NaOH solution ma 0.50 V. Hōʻike nā insets i nā pihi calibration o nā pane o kēia manawa o NCO nanomaterials: (e ) Nā pane KA o UNCO, (f) PNCO, (g) TNCO, a me (h) FNCO me ka hoʻohui stepwise o 1 mM glucose a me 0.1 mM mea hoʻopili (LA, DA, AA, a me UA).
ʻO ka hiki ke hoʻopilikia i ka ʻike glucose he mea nui ʻē aʻe i ke koho ʻana a me ka naʻau o ka glucose ma o ka hoʻopili ʻana i nā pūhui.Ma ka fig.Hōʻike ʻo 6e–h i ka hiki ke hoʻopilikia i nā nanomaterials NCO ma 0.1 M NaOH solution.Ua koho ʻia a hoʻohui ʻia i ka electrolyte nā molekole hoʻopili maʻamau e like me LA, DA, AA a me UA.ʻIke ʻia ka pane o kēia manawa o nā nanomaterials NCO i ka glucose.Eia naʻe, ʻaʻole i loli ka pane o kēia manawa iā UA, DA, AA a me LA, ʻo ia ka mea i hōʻike ʻia nā nanomaterials NCO i ke koho maikaʻi loa no ka ʻike glucose me ka nānā ʻole i kā lākou ʻokoʻa morphological.Hōʻike ka Figure S13 i ke kūpaʻa o nā nanomaterials NCO i nānā ʻia e ka pane CA ma 0.1 M NaOH, kahi i hoʻohui ʻia ai ka 1 mM glucose i ka electrolyte no ka manawa lōʻihi (80,000 s).ʻO nā pane i kēia manawa o UNCO, PNCO, TNCO, a me FNCO he 98.6%, 97.5%, 98.4%, a me 96.8%, kēlā me kēia, o ke au mua me ka hoʻohui ʻana o kahi glucose 1 mM hou ma hope o 80,000 s.Hōʻike nā mea nano NCO āpau i nā hopena redox paʻa me nā ʻano glucose i kahi manawa lōʻihi.ʻO ka mea nui, ʻaʻole i hoʻopaʻa wale ʻia ka hōʻailona UNCO o kēia manawa i ka 97.1% o kāna manawa mua, akā ua paʻa pū i kāna mau morphology a me nā waiwai paʻa kemika ma hope o ka hoʻāʻo ʻana o ka hoʻopaʻa ʻana i ka wā lōʻihi (Figures S14 a me S15a).Eia hou, ua ho'āʻoʻia ka reproducibility a me ka reproducibility o UNCO e like me ka mea i hōʻikeʻia ma ka Fig. S15b, c.ʻO ka helu Relative Standard Deviation (RSD) o ka reproducibility a me ka hoʻihoʻi hou ʻana he 2.42% a me 2.14%, kēlā me kēia, e hōʻike ana i nā noi kūpono e like me ka mea ʻike glucose pae ʻenehana.Hōʻike kēia i ka paʻa maikaʻi a me ke kemika o UNCO ma lalo o nā kūlana oxidizing no ka ʻike glucose.
Ua maopopo ka hana electrochemical o NCO nanomaterials no ka ʻike glucose e pili nui ana i nā pono hana o ka pae mua i hoʻomākaukau ʻia e ke ʻano hydrothermal me nā additives (Fig. S16).ʻO ka wahi kiʻekiʻe o UNCO ka nui o nā wahi electroactive ma mua o nā nanostructure ʻē aʻe, e kōkua ana i ka hoʻomaikaʻi ʻana i ka hopena redox ma waena o nā mea hana a me nā ʻāpana glucose.Hiki i ke ʻano mesoporous o UNCO ke hōʻike maʻalahi i nā pūnaewele Ni a me Co i ka electrolyte e ʻike ai i ka glucose, e hopena i ka pane electrochemical wikiwiki.Hiki i nā nanowires hoʻokahi-dimensional ma UNCO ke hoʻonui i ka diffusion rate ma ka hāʻawi ʻana i nā ala kaʻa pōkole no nā ion a me nā electrons.Ma muli o nā hiʻohiʻona kūikawā i ʻōlelo ʻia ma luna nei, ʻoi aku ka maikaʻi o ka hana electrochemical o UNCO no ka ʻike glucose ma mua o ka PNCO, TNCO, a me FNCO.Hōʻike kēia i ka morphology UNCO kūikawā me ka ʻili kiʻekiʻe a me ka nui o ka pore hiki ke hāʻawi i ka hana electrochemical maikaʻi loa no ka ʻike glucose.
Ua aʻo ʻia ka hopena o ka ʻili kikoʻī ma nā hiʻohiʻona electrochemical o nā nanomaterials NCO.ʻO nā nanomaterials NCO me nā ʻāpana kikoʻī like ʻole i loaʻa ma ke ʻano hydrothermal maʻalahi a me nā mea hoʻohui like ʻole.ʻO nā mea hoʻohui like ʻole i ka wā synthesis e komo i loko o nā hopena kemika like ʻole a hana i nā ʻāpana mua like ʻole.Ua alakaʻi kēia i ka hui ʻana o nā nanostructures like ʻole me nā morphologies e like me ka hedgehog, pine nila, tremella, a me ka pua.Ma hope o ka hoʻomehana ʻana e alakaʻi i kahi kūlana kemika like o ka crystalline NCO nanomaterials me kahi ʻano spinel ʻoiai e mālama ana i kā lākou morphology kūikawā.Ma muli o ka ʻili o nā morphology ʻē aʻe, ua hoʻomaikaʻi maikaʻi ʻia ka hana electrochemical o NCO nanomaterials no ka ʻike glucose.ʻO ka mea nui, ua hoʻonui ʻia ka ʻike glucose o nā nanomaterials NCO me ka morphology urchin moana i 116.33 µA mM-1 cm-2 me kahi coefficient correlation kiʻekiʻe (R2) o 0.99 i ka laina laina o 0.01-6 mM.Hiki i kēia hana ke hāʻawi i kumu ʻepekema no ka ʻenekinia morphological e hoʻoponopono i kahi kikoʻī kikoʻī a hoʻomaikaʻi hou i ka hana electrochemical o nā noi biosensor non-enzymatic.
Ni(NO3)2 6H2O, Co(NO3)2 6H2O, urea, hexamethylenetetramine (HMT), ammonium fluoride (NH4F), sodium hydroxide (NaOH), d-(+)-glucose, lactic acid (LA), dopamine hydrochloride ( ʻO DA), L-ascorbic acid (AA) a me ka uric acid (UA) i kūʻai ʻia mai Sigma-Aldrich.ʻO nā reagents a pau i hoʻohana ʻia no ka helu analytical a ua hoʻohana ʻia me ka hoʻomaʻemaʻe ʻole.
Ua hana ʻia ʻo NiCo2O4 e kahi ʻano hydrothermal maʻalahi a ukali ʻia e ka mālama wela.ʻO ka pōkole: 1 mmol o ka nickel nitrate (Ni(NO3)2∙6H2O) a me 2 mmol o ka cobalt nitrate (Co(NO3)2∙6H2O) i hoʻoheheʻe ʻia i loko o 30 ml o ka wai hoʻoheheʻe.No ka mālama ʻana i ka morphology o NiCo2O4, ua hoʻohui ʻia nā mea hoʻohui e like me ka urea, ammonium fluoride a me hexamethylenetetramine (HMT) i ka hopena i luna.A laila ua hoʻoili ʻia ka hui holoʻokoʻa i kahi autoclave 50 ml Teflon-lined a kau ʻia i kahi hopena hydrothermal i loko o ka umu convection ma 120 ° C. no 6 mau hola.Ma hope o ka hoʻoluʻu maoli ʻana i ka lumi wela, ua centrifuged ʻia ka hopena o ka wai a holoi ʻia me ka wai distilled a me ka ethanol, a laila maloʻo i ka pō ma 60 ° C.Ma hope o kēlā, ua calcined ʻia nā laʻana hou i hoʻomākaukau ʻia ma 400 ° C no 4 mau hola ma ka lewa ambient.Hoʻopaʻa ʻia nā kikoʻī o nā hoʻokolohua ma ka Papa ʻIke Hou S2.
X-ray diffraction analysis (XRD, X'Pert-Pro MPD; PANalytical) ua hana ʻia me ka hoʻohana ʻana i ka radiation Cu-Kα (λ = 0.15418 nm) ma 40 kV a me 30 mA no ke aʻo ʻana i nā waiwai hoʻolālā o nā nanomaterial NCO āpau.Ua hoʻopaʻa ʻia nā ʻano ʻokoʻa ma ka laulā o nā kihi 2θ 10-80° me kahi ʻanuʻu o 0.05°.Ua nānā ʻia ka morphology a me ka microstructure me ka hoʻohana ʻana i ka microscopy electron emission scanning electron microscopy (FESEM; Nova SEM 200, FEI) a me ka scanning transmission electron microscopy (STEM; TALOS F200X, FEI) me ka ikehu dispersive X-ray spectroscopy (EDS).Ua kālailai ʻia nā kūlana valence o ka ʻili e ka X-ray photoelectron spectroscopy (XPS; PHI 5000 Versa Probe II, ULVAC PHI) me ka hoʻohana ʻana i ka radiation Al Kα (hν = 1486.6 eV).Hoʻopili ʻia nā ikaika paʻa me ka hoʻohana ʻana i ka C1 s peak ma 284.6 eV ma ke ʻano he kuhikuhi.Ma hope o ka hoʻomākaukau ʻana i nā laʻana ma nā ʻāpana KBr, ua hoʻopaʻa ʻia ʻo Fourier transform infrared (FT-IR) spectra ma ka helu hawewe 1500-400 cm-1 ma kahi spectrometer Jasco-FTIR-6300.Loaʻa pū ʻia ʻo Raman spectra me ka hoʻohana ʻana i kahi spectrometer Raman (Horiba Co., Iapana) me kahi laser He-Ne (632.8 nm) ma ke ʻano he kumu hauʻoli.Ua hoʻohana ʻo Brunauer-Emmett-Teller (BET; BELSORP mini II, MicrotracBEL, Corp.) i ka BELSORP mini II analyzer (MicrotracBEL Corp.) e ana i nā haʻahaʻa haʻahaʻa N2 adsorption-desorption isotherms e koho i kahi kikoʻī kikoʻī a me ka puʻunaue nui.
ʻO nā ana electrochemical a pau, e like me ka voltammetry cyclic (CV) a me ka chronoamperometry (CA), ua hana ʻia ma kahi PGSTAT302N potentiostat (Metrohm-Autolab) ma ka lumi wela me ka hoʻohana ʻana i kahi ʻōnaehana electrode ʻekolu i 0.1 M NaOH aqueous solution.Ua hoʻohana ʻia kahi electrode hana i hoʻokumu ʻia ma ke aniani kalapona electrode (GC), kahi Ag/AgCl electrode, a me kahi pā platinum i hoʻohana ʻia ma ke ʻano he electrode hana, electrode kuhikuhi, a me ka electrode counter.Ua hoʻopaʻa ʻia nā CV ma waena o 0 a me 0.6 V ma nā helu scan like ʻole o 5-100 mV s-1.No ke ana ʻana i ka ECSA, ua hana ʻia ʻo CV ma ka laulā o 0.1-0.2 V ma nā helu scan like ʻole (5-100 mV s-1).E kiʻi i ka hopena CA o ka hāpana no ka glucose ma 0.5 V me ka hoʻoulu ʻana.No ke ana ʻana i ka naʻau a me ke koho, e hoʻohana i ka 0.01–6 mM glucose, 0.1 mM LA, DA, AA, a me UA i ka 0.1 M NaOH.Ua hoʻāʻo ʻia ka reproducibility o UNCO me ka hoʻohana ʻana i ʻekolu mau electrodes i hoʻohui ʻia me 5 mM glucose ma lalo o nā kūlana maikaʻi loa.Ua nānā ʻia ka hana hou ʻana ma ka hana ʻana i ʻekolu ana me hoʻokahi electrode UNCO i loko o 6 mau hola.
Hoʻokomo ʻia nā ʻikepili āpau i hana ʻia a i ʻike ʻia i loko o kēia haʻawina i loko o kēia ʻatikala i paʻi ʻia (a me kāna faila ʻike hoʻohui).
Mergenthaler, P., Lindauer, U., Dienel, GA & Meisel, A. Sugar no ka lolo: Ke kuleana o ka glucose i ka hana o ka lolo physiological a me ka pathological. Mergenthaler, P., Lindauer, U., Dienel, GA & Meisel, A. Sugar no ka lolo: Ke kuleana o ka glucose i ka hana o ka lolo physiological a me ka pathological.Mergenthaler, P., Lindauer, W., Dinel, GA a me Meisel, A. Sugar no ka lolo: ke kuleana o ka glucose i ka hana o ka lolo physiological a me ka pathological.Mergenthaler P., Lindauer W., Dinel GA a me Meisel A. Glucose i loko o ka lolo: ke kuleana o ka glucose i nā hana o ka lolo physiological a me ka pathological.Nā ʻano o ka neurology.36, 587–597 (2013).
Gerich, JE, Meyer, C., Woerle, HJ & Stumvoll, M. Renal gluconeogenesis: ʻO kona koʻikoʻi i ka homeostasis glucose kanaka. Gerich, JE, Meyer, C., Woerle, HJ & Stumvoll, M. Renal gluconeogenesis: ʻO kona koʻikoʻi i ka homeostasis glucose kanaka.Gerich, JE, Meyer, K., Wörle, HJ a me Stamwall, M. Renal gluconeogenesis: kona koʻikoʻi i ka homeostasis glucose i ke kanaka. Gerich, JE, Meyer, C., Woerle, HJ & Stumvoll, M. 肾糖异生:它在人体葡萄糖稳态中的重要性。 Gerich, JE, Meyer, C., Woerle, HJ & Stumvoll, M. 鈥糖异生: Kona mea nui i ke kino kanaka.Gerich, JE, Meyer, K., Wörle, HJ a me Stamwall, M. Renal gluconeogenesis: kona koʻikoʻi i ka homeostasis glucose i nā kānaka.Maʻi Diabetes Care 24, 382–391 (2001).
Kharroubi, AT & Darwish, HM Diabetes mellitus: ʻO ke ahulau o ke kenekulia. Kharroubi, AT & Darwish, HM Diabetes mellitus: ʻO ke ahulau o ke kenekulia.Harroubi, AT a me Darvish, HM Diabetes mellitus: ke ahulau o ke kenekulia.Harrubi AT a me Darvish HM Diabetes: ke ahulau o kēia kenekulia.Honua J. Diabetes.6, 850 (2015).
Brad, KM et al.ʻO ka prevalence o ka maʻi diabetes i nā pākeke ma ke ʻano o ka maʻi diabetes - USA.pōā.ʻO ka wiki make 67, 359 (2018).
Jensen, MH et al.ʻO ka nānā ʻana i ka glucose mau ʻoihana i ka maʻi diabetes type 1: ʻike retrospective o ka hypoglycemia.J. Ka Naauao o ka Diabetes.ʻenehana.7, 135–143 (2013).
Witkowska Nery, E., Kundys, M., Jeleń, PS & Jönsson-Niedziółka, M. Electrochemical glucose sensing: aia anei kahi wahi no ka hoʻomaikaʻi ʻana? Witkowska Nery, E., Kundys, M., Jeleń, PS & Jönsson-Niedziółka, M. Electrochemical glucose sensing: aia anei kahi wahi no ka hoʻomaikaʻi ʻana?ʻO Witkowska Neri, E., Kundis, M., Eleni, PS a me Jonsson-Nedzulka, M. Electrochemical hoʻoholo o ka pae glucose: aia mau nā manawa e hoʻomaikaʻi ai? Witkowska Nery, E., Kundys, M., Jeleń, PS & Jönsson-Niedziółka, M. 电化学葡萄糖传感:还有改进的余地吗? Witkowska Nery, E., Kundys, M., Jeleń, PS & Jönsson-Niedziółka, M. 电视化葡萄糖传感:是电视的余地吗?Witkowska Neri, E., Kundis, M., Eleni, PS a me Jonsson-Nedzulka, M. Electrochemical hoʻoholo o nā pae glucose: aia nā manawa e hoʻomaikaʻi ai?anus Chemical.11271–11282 (2016).
Jernelv, IL et al.Ka nānā ʻana i nā ʻano optical no ka nānā ʻana i ka glucose mau.Hoʻopili i ka Spectrum.54, 543–572 (2019).
Park, S., Boo, H. & Chung, TD Electrochemical non-enzymatic glucose sensors. Park, S., Boo, H. & Chung, TD Electrochemical non-enzymatic glucose sensors.Park S., Bu H. a me Chang TD Electrochemical non-enzymatic glucose sensors.Park S., Bu H. a me Chang TD Electrochemical non-enzymatic glucose sensors.anus.ʻO Chim.nūpepa.556, 46–57 (2006).
Harris, JM, Reyes, C. & Lopez, GP Nā kumu maʻamau o ka glucose oxidase instability in in vivo biosensing: kahi loiloi pōkole. Harris, JM, Reyes, C. & Lopez, GP Nā kumu maʻamau o ka glucose oxidase instability in in vivo biosensing: kahi loiloi pōkole.Harris JM, Reyes S., a me Lopez GP Nā kumu maʻamau o ka glucose oxidase instability in in vivo biosensor assay: he loiloi pōkole. Harris, JM, Reyes, C. & Lopez, GP 体内生物传感中葡萄糖氧化酶不稳定的常见原因:简要回顾。 Harris, JM, Reyes, C. & Lopez, GPHarris JM, Reyes S., a me Lopez GP Nā kumu maʻamau o ka glucose oxidase instability in in vivo biosensor assay: he loiloi pōkole.J. Ka Naauao o ka Diabetes.ʻenehana.7, 1030–1038 (2013).
ʻO Diouf, A., Bouchikhi, B. & El Bari, N. He meaʻike glucose electrochemical nonenzymatic e pili ana i ka polymer i paʻi ʻia i ka molecularly a me kāna noi i ke ana ʻana i ka glucose saliva. ʻO Diouf, A., Bouchikhi, B. & El Bari, N. He meaʻike glucose electrochemical nonenzymatic e pili ana i ka polymer i paʻi ʻia i ka molecularly a me kāna noi i ke ana ʻana i ka glucose saliva.ʻO Diouf A., Bouchihi B. a me El Bari N. Non-enzymatic electrochemical glucose sensor e pili ana i ka polymer molecularly imprinted a me kāna noi no ke ana ʻana i ka pae glucose i loko o ka saliva. Diouf, A., Bouchikhi, B. & El Bari, N. 基于分子印迹聚合物的非酶电化学葡萄糖传感器及其在测量唾液葡萄糖中的应用。 Diouf, A., Bouchikhi, B. & El Bari, N. Non-enzyme electrochemical glucose sensor ma muli o ka molecular imprinting polymer a me kāna noi i ke ana ʻana i ka glucose salivary.ʻO Diouf A., Bouchihi B. a me El Bari N. Non-enzymatic electrochemical glucose sensors e pili ana i ka molecularly imprinted polymers a me kā lākou noi no ke ana ʻana i ka pae glucose i loko o ka saliva.papahana ʻepekema alma mater S. 98, 1196–1209 (2019).
Zhang, Yu et al.ʻO ka nānā ʻana i ka glucose non-enzymatic ma muli o ka CuO nanowires.Sens. Actuators B Chem., 191, 86–93 (2014).
ʻO Mu, Y., Jia, D., He, Y., Miao, Y. & Wu, HL Nano nickel oxide i hoʻololi i nā meaʻike glucose non-enzymatic me ka hoʻonuiʻana i kaʻike ma o ka papahana kaʻina hana electrochemical i ka hiki ke kiʻekiʻe. ʻO Mu, Y., Jia, D., He, Y., Miao, Y. & Wu, HL Nano nickel oxide i hoʻololi i nā meaʻike glucose non-enzymatic me ka hoʻonuiʻana i kaʻike ma o ka papahana kaʻina hana electrochemical i ka hiki ke kiʻekiʻe. Mu, Y., Jia, D., He, Y., Miao, Y. & Wu, HL лагодаря стратегии электрохимического процесса при высоком потенциале. Mu, Y., Jia, D., He, Y., Miao, Y. & Wu, HL Non-enzymatic glucose sensors i hoʻololiʻia me ka nickel nanooxide me ka hoʻonuiʻana i kaʻike ma o ka hoʻolālā hana electrochemical kiʻekiʻe. Mu, Y., Jia, D., He, Y., Miao, Y. & Wu, HL灵敏度。 Mu, Y., Jia, D., He, Y., Miao, Y. & Wu, HL Nano-oxide nickel modification Mu, Y., Jia, D., He, Y., Miao, Y. & Wu, HL Nano-NiO модифицированный неферментативный датчик глюкозы с повышенной чувствитеть чувствитеть циальной стратегии электрохимического процесса. ʻO Mu, Y., Jia, D., He, Y., Miao, Y. & Wu, HL Nano-NiO i hoʻololi i ka meaʻike glucose non-enzymatic me ka hoʻonuiʻana i kaʻike e ka hoʻolālā kaʻina hana electrochemical kiʻekiʻe.mea ike olaola.bioelectronics.26, 2948–2952 (2011).
Shamsipur, M., Najafi, M. & Hosseini, MRM Hoʻomaikaʻi maikaʻi loa i ka electrooxidation o ka glucose ma kahi nickel (II) oxide / multi-walled carbon nanotube modified glassy carbon electrode. Shamsipur, M., Najafi, M. & Hosseini, MRM Hoʻomaikaʻi maikaʻi loa i ka electrooxidation o ka glucose ma kahi nickel (II) oxide / multi-walled carbon nanotube modified glassy carbon electrode.Shamsipur, M., Najafi, M. a me Hosseini, MRM Hoʻomaikaʻi maikaʻi loa i ka electrooxidation o ka glucose ma ke aniani kalapona electrode i hoʻololi ʻia me ka nickel(II) oxide / multi-walled carbon nanotubes.Shamsipoor, M., Najafi, M., a me Hosseini, MRM Hoʻomaikaʻi loa i ka electrooxidation o ka glucose ma nā electrodes kalapona aniani i hoʻololi ʻia me ka nickel(II) oxide / multilayer carbon nanotubes.Bioelectrochemistry 77, 120-124 (2010).
Veeramani, V. et al.He nanocomposite o ke kalapona porous a me ka nickel oxide me ka maʻiʻo kiʻekiʻe o nā heteroatoms ma ke ʻano he enzyme-free high-sensitivity sensor no ka ʻike glucose.ʻO Sens. Actuators B Chem.221, 1384–1390 (2015).
ʻO Marco, JF et al.ʻO keʻano o ka nickel cobaltate NiCo2O4 i loaʻa i nāʻano likeʻole: XRD, XANES, EXAFS a me XPS.J. Kemika Mokuʻāina Paʻa.153, 74–81 (2000).
Zhang, J., Sun, Y., Li, X. & Xu, J. Ka hana ʻana o NiCo2O4 nanobelt e kahi ʻano hana hoʻoheheʻe kemika no ka noi ʻana i ka glucose electrochemical sensor non-enzymatic. Zhang, J., Sun, Y., Li, X. & Xu, J. Ka hana ʻana o NiCo2O4 nanobelt e kahi ʻano hana hoʻoheheʻe kemika no ka noi ʻana i ka glucose electrochemical sensor non-enzymatic. Zhang, J., Sun, Y., Li, X. & Xu, J сенсора глюкозы. Zhang, J., Lā, Y., Li, X. & Xu, J. Hana ʻia o NiCo2O4 nanobelt ma ke ʻano hoʻoheheʻe kemika no ka hoʻohana ʻana i ka ʻenekini electrochemical glucose sensor. Zhang, J., Lā, Y., Li, X. & Xu, J. 通过化学共沉淀法制备NiCo2O4 纳米带用于非酶促葡萄糖电匠。 Zhang, J., Sun, Y., Li, X. & Xu, J. Through chemistry 共沉激法光容NiCo2O4 nano如这些非话能生能糖系统电影电影电影电影电影电影电话Zhang, J., Sun, Y., Li, X. a me Xu, J. Hoʻomākaukau ʻana i nā nanoribbons NiCo2O4 ma ke ʻano hoʻoheheʻe kemika no ka hoʻohana ʻana i ka sensor electrochemical non-enzymatic o ka glucose.J. Hui o na huila.831, 154796 (2020).
Saraf, M., Natarajan, K. & Mobin, SM Multifunctional porous NiCo2O4 nanorods: Sensitive enzymeless glucose detection and supercapacitor properties with impedance spectroscopic investigations. Saraf, M., Natarajan, K. & Mobin, SM Multifunctional porous NiCo2O4 nanorods: Sensitive enzymeless glucose detection and supercapacitor properties with impedance spectroscopic investigations. Saraf, M., Natarajan, K. & Mobin, SMʻO nā nanorods NiCo2O4 porous nui: ʻike ʻia ka glucose enzyme ʻole a me nā waiwai supercapacitor me nā haʻawina spectroscopic impedance.Saraf M, Natarajan K, a me Mobin SM Multifunctional porous NiCo2O4 nanorods: sensitive enzymeless glucose detection and characterization of supercapacitors by impedance spectroscopy.Hou J. Chem.41, 9299–9313 (2017).
Zhao, H., Zhang, Z., Zhou, C. & Zhang, H. Hoʻoponopono i ka morphology a me ka nui o NiMoO4 nanosheets heleuma ma NiCo2O4 nanowires: ka optimized core-shell hybrid for high energy density asymmetric supercapacitors. Zhao, H., Zhang, Z., Zhou, C. & Zhang, H. Hoʻoponopono i ka morphology a me ka nui o NiMoO4 nanosheets heleuma ma NiCo2O4 nanowires: ka optimized core-shell hybrid for high energy density asymmetric supercapacitors.Zhao, H., Zhang, Z., Zhou, K. a me Zhang, H. Hoʻoponopono i ka morphology a me ka nui o NiMoO4 nanosheets heleuma ma NiCo2O4 nanowires: optimized hybrid core-shell no asymmetric supercapacitors me ka ikehu kiʻekiʻe. Zhao, H., Zhang, Z., Zhou, C. & Zhang, H. 调整固定在NiCo2O4 纳米线上的NiMoO4 纳米片的形态和尺寸:用于體级电容器的优化核-壳混合体. Zhao, H., Zhang, Z., Zhou, C. & Zhang, H. Hoʻoponopono i ka morphology a me ka nui o NiMoO4 nanosheets immobilized ma NiCo2O4 nanowires: optimization o core-shell hybrids no ka ikehu kiʻekiʻe asymmetric supercapacitors kino.Zhao, H., Zhang, Z., Zhou, K. a me Zhang, H. Hoʻoponopono i ka morphology a me ka nui o NiMoO4 nanosheets immobilized ma NiCo2O4 nanowires: he optimized core-shell hybrid no ke kino o asymmetric supercapacitors me ka ikehu kiʻekiʻe.Noi no ka heenalu.541, 148458 (2021).
Zhuang Z. et al.ʻAʻole-enzymatic glucose sensor me ka hoʻonui i ka naʻau ma muli o nā electrodes keleawe i hoʻololi ʻia me CuO nanowires.kanaka kālailai.133, 126–132 (2008).
Kim, JY et al.ʻO ka hoʻoponopono ʻana i ka ʻili o nā nanorods ZnO e hoʻomaikaʻi i ka hana o nā mea ʻike glucose.Sens. Actuators B Chem., 192, 216–220 (2014).
ʻO Ding, Y., Wang, Y., Su, L., Zhang, H. & Lei, Y. Ka hoʻomākaukau ʻana a me ke ʻano o nā nanofibers NiO–Ag, nā nanofibers NiO, a me ka porous Ag: e pili ana i ka hoʻomohala ʻana i kahi mea koʻikoʻi a koho ʻole. -enzymatic glucose sensor. ʻO Ding, Y., Wang, Y., Su, L., Zhang, H. & Lei, Y. Ka hoʻomākaukau ʻana a me ke ʻano o nā nanofibers NiO–Ag, nā nanofibers NiO, a me ka porous Ag: e pili ana i ka hoʻomohala ʻana i kahi mea koʻikoʻi a koho ʻole. -enzymatic glucose sensor.ʻO Ding, Yu, Wang, Yu, Su, L, Zhang, H., a me Lei, Yu.Ka hoʻomākaukau ʻana a me ke ʻano o ka NiO-Ag nanofibers, NiO nanofibers, a me ka porous Ag: No ka hoʻomohala ʻana i kahi ʻenekona glucose koʻikoʻi a koho-enzymatic. Ding, Y., Wang, Y., Su, L., Zhang, H. & Lei, Y. NiO-Ag非-酶促葡萄糖传感器。 Ding, Y., Wang, Y., Su, L., Zhang, H. & Lei, Y. NiO-Ag促葡萄糖传感器。ʻO Ding, Yu, Wang, Yu, Su, L, Zhang, H., a me Lei, Yu.Ka hoʻomākaukau ʻana a me ka hōʻike ʻana i nā nanofibers NiO-Ag, nā nanofibers NiO, a me ke kālā porous: E pili ana i kahi mea ʻike koʻikoʻi a koho ʻole i ka glucose-stimulating sensor.J. Alma mater.Kemika.20, 9918–9926 (2010).
Cheng, X. et al.ʻO ka hoʻoholo ʻana o nā kaʻapona e ka electrophoresis o ka capillary zone me ka ʻike amperometric ma kahi electrode carbon paste i hoʻololi ʻia me ka nano nickel oxide.kemika meaʻai.106, 830–835 (2008).
Casella, IG Electrodeposition o Cobalt Oxide Thin Films mai Carbonate Solutions Loaʻa nā Co(II)–Tartrate Complexes.J. Elele.Kemika.520, 119–125 (2002).
Ding, Y. et al.Nā nanofibers Electrospun Co3O4 no ka ʻike ʻana i ka glucose maʻalahi a koho.mea ike olaola.bioelectronics.26, 542–548 (2010).
Fallatah, A., Almomtan, M. & Padalkar, S. Cerium oxide based glucose biosensors: Influence of morphology and underlying substrate on biosensor performance. Fallatah, A., Almomtan, M. & Padalkar, S. Cerium oxide based glucose biosensors: Influence of morphology and underlying substrate on biosensor performance.Fallata, A., Almomtan, M. a me Padalkar, S. Cerium oxide-based glucose biosensors: nā hopena o ka morphology a me ka substrate nui ma ka hana biosensor.Fallata A, Almomtan M, a me Padalkar S. Cerium-based glucose biosensors: nā hopena o ka morphology a me ka matrix kumu ma ka hana biosensor.Kākoʻo ʻia ʻo ACS.Kemika.papahana.7, 8083–8089 (2019).
Ka manawa hoʻouna: Nov-16-2022