Hoʻololi ka pilikia i loko o kahi carbon monolayer amorphous i ka conductivity uila

Mahalo no kou kipa ʻana iā Nature.com.Ke hoʻohana nei ʻoe i kahi polokalamu kele pūnaewele me ke kākoʻo CSS palena ʻole.No ka ʻike maikaʻi loa, manaʻo mākou e hoʻohana i kahi polokalamu kele pūnaewele hou (a i ʻole e hoʻopau i ke ʻano Compatibility Mode ma Internet Explorer).Eia kekahi, e hōʻoia i ke kākoʻo mau, hōʻike mākou i ka pūnaewele me ka ʻole o nā styles a me JavaScript.
ʻO ka hoʻopili ʻana o nā hoʻonohonoho atomic, ʻoi aku ka degere o ka maʻi (DOD) o nā amorphous solids me nā waiwai, he wahi koʻikoʻi o ka hoihoi i ka ʻepekema waiwai a me nā mea condensed physics ma muli o ka paʻakikī o ka hoʻoholo ʻana i nā kūlana kūpono o nā atom i ʻekolu-dimensional. hale1,2,3,4., He mea pohihihi kahiko, 5. No keia hopena, ua haawi mai na nenee 2D i ka ike i ka mea pohihihi ma ka ae ana i na mea a pau e hoike pololei ia 6,7.ʻO ke kiʻi pololei ʻana o kahi monolayer amorphous o carbon (AMC) i ulu ʻia e ka laser deposition e hoʻonā i ka pilikia o ka hoʻonohonoho atomic, e kākoʻo ana i ka ʻike hou o nā crystallites i loko o nā paʻa aniani e pili ana i ka manaʻo o ka ʻupena8.Eia nō naʻe, ʻaʻole maopopo ka pilina kumu ma waena o ka hoʻokumu ʻana o ka unahi atomic a me nā waiwai macroscopic.Eia mākou e hōʻike maʻalahi i ka DOD a me ka conductivity i nā kiʻi ʻoniʻoni AMC ma o ka hoʻololi ʻana i ka mahana ulu.ʻO ka mea nui, ʻo ka wela o ka paepae pyrolysis ke kī nui no ka ulu ʻana i nā AMC conductive me kahi ʻano like ʻole o ka lele ʻana o ka medium order jumps (MRO), aʻo ka hoʻonui ʻana i ka mahana ma 25 ° C ke kumu e nalowale ai nā AMC i ka MRO a lilo i insulating uila, e hoʻonui ana i ke kūpaʻa o ka lau. mea i 109 manawa.Ma waho aʻe o ka nānā ʻana i nā nanocrystallites i hoʻopaʻa ʻia i loko o nā ʻenehana hoʻomau mau, ua hōʻike ʻia ka microscopy electron hoʻonā atomika i ka hele ʻana o ka MRO a me ka density nanocrystallite pili i ka mahana, ʻelua mau ʻāpana kauoha i manaʻo ʻia no ka wehewehe piha ʻana o DOD.Hoʻokumu ka helu helu helu i ka palapala conductivity ma ke ʻano he hana o kēia mau ʻāpana ʻelua, pili pono i ka microstructure i nā waiwai uila.ʻO kā mākou hana he hana koʻikoʻi i ka hoʻomaopopo ʻana i ka pilina ma waena o ke ʻano a me nā waiwai o nā mea amorphous ma kahi pae kumu a paʻa i ke ala no nā mea uila e hoʻohana ana i nā mea amorphous ʻelua.
Loaʻa nā ʻikepili kūpono a pau i hana ʻia a/a i ʻike ʻia i loko o kēia noiʻi mai nā mea kākau ma muli o ke noi kūpono.
Loaʻa ke code ma GitHub (https://github.com/vipandyc/AMC_Monte_Carlo; https://github.com/ningustc/AMCProcessing).
ʻO Sheng, HW, Luo, VK, Alamgir, FM, Bai, JM a me Ma, E. ʻAtomic packing a me ka pōkole a me ka manawa kūpono i nā aniani metala.Nature 439, 419–425 (2006).
Greer, AL, ma ke Kinohi Metallurgy, 5th ed.(eds. Laughlin, DE and Hono, K.) 305–385 (Elsevier, 2014).
ʻO Ju, WJ et al.Ka hoʻokō ʻana i kahi monolayer kalapona paʻakikī mau.ka ʻepekema.Hoʻonui ʻia 3, e1601821 (2017).
Toh, KT et al.Synthesis a me nā waiwai o kahi monolayer kākoʻo ponoʻī o ke kalapona amorphous.Nature 577, 199–203 (2020).
Schorr, S. & Weidenthaler, K. (eds.) Crystallography in Materials Science: From Structure-Property Relationships to Engineering (De Gruyter, 2021).
Yang, Y. et al.E hoʻoholo i ke ʻano ʻekolu manaʻo atomika o nā mea paʻa amorphous.Nature 592, 60–64 (2021).
Kotakoski J., Krasheninnikov AV, Kaiser W. a me Meyer JK Mai nā hemahema kiko i ka graphene a hiki i ke kalapona amorphous ʻelua.physics.Kahu Wright.106, 105505 (2011).
ʻO Eder FR, Kotakoski J., Kaiser W., a me Meyer JK ʻO ke ala mai ka hoʻonohonoho ʻana i ka hoʻohaunaele—atom by atom mai ka graphene a hiki i ke aniani kalapona 2D.ka ʻepekema.Hale 4, 4060 (2014).
Huang, P.Yu.et al.ʻIke ʻia o ka hoʻonohonoho hou ʻana o ka atomic ma ke aniani silica 2D: nānā i ka hula silica gel.ʻEpekema 342, 224–227 (2013).
Lee H. et al.ʻO ka hoʻohui ʻana o nā kiʻiʻoniʻoni graphene kiʻekiʻe kiʻekiʻe a me ke ʻano like ʻole ma luna o ke keleawe keleawe.ʻEpekema 324, 1312–1314 (2009).
Reina, A. et al.E hana i nā kiʻi ʻoniʻoni graphene haʻahaʻa, ʻāpana nui ma luna o nā substrate ʻokoʻa ma o ka waiho ʻana o ka mahu.Nanolet.9, 30–35 (2009).
ʻO Nandamuri G., Rumimov S. a me Solanki R. Ka hoʻoheheʻe ʻana o ka mahu o nā kiʻi ʻoniʻoni lahilahi graphene.Nanotechnology 21, 145604 (2010).
Kai, J. et al.Ka hana ʻana o nā graphene nanoribbons ma ka piʻi ʻana o ka pololei atomika.Nature 466, 470–473 (2010).
Kolmer M. et al.Hoʻohui kūpono o nā graphene nanoribbons o ka pololei atomika ma luna o ka ʻili o nā ʻokikene metala.ʻEpekema 369, 571–575 (2020).
ʻO Yaziev OV Nā alakaʻi no ka helu ʻana i nā waiwai uila o nā graphene nanoribbons.kemika mālama.pahu waihona.46, 2319–2328 (2013).
Jang, J. et al.ʻO ka ulu haʻahaʻa haʻahaʻa o nā kiʻiʻoniʻoni graphene paʻa mai benzene ma o ka hoʻoheheʻe ʻana o ka mahu kemika.ka ʻepekema.Hale 5, 17955 (2015).
Choi, JH et al.ʻO ka emi nui o ka ulu ʻana o ka graphene ma ke keleawe ma muli o ka hoʻonui ʻia ʻana o London.ka ʻepekema.Hale 3, 1925 (2013).
Wu, T. et al.ʻO nā kiʻiʻoniʻoni Graphene mau i hoʻopaʻa ʻia ma ka haʻahaʻa haʻahaʻa ma o ka hoʻokomo ʻana i nā Halogen ma ke ʻano he mau hua.Nanoscale 5, 5456–5461 (2013).
Zhang, PF et al.ʻO B2N2-perylenes mua me nā ʻokoʻa BN.ʻO Angie.Kemika.loko Ed.60, 23313–23319 (2021).
Malar, LM, Pimenta, MA, Dresselhaus, G. a me Dresselhaus, MS Raman spectroscopy i ka graphene.physics.Lunamakaainana 473, 51–87 (2009).
Egami, T. & Billinge, SJ Ma lalo o ka Bragg Peaks: Ka Hoʻolālā Hoʻolālā o nā Mea Paʻakikī (Elsevier, 2003).
Xu, Z. et al.Hōʻike ʻo TEM ma ka wahi i ka conductivity uila, nā waiwai kemika, a me nā loli paʻa mai ka graphene oxide a i ka graphene.ACS Nano 5, 4401–4406 (2011).
Wang, WH, Dong, C. & Shek, CH Nā aniani metala volumetric.alma mater.ka ʻepekema.papahana.R Rep. 44, 45–89 (2004).
Mott NF a me Davis EA Electronic Processes in Amorphous Materials (Oxford University Press, 2012).
Kaiser AB, Gomez-Navarro C., Sundaram RS, Burghard M. a me Kern K. Conduction mechanisms in chemically derivatized graphene monolayers.Nanolet.9, 1787–1792 (2009).
Ambegaokar V., Galperin BI, Langer JS Hopping conduction i nā ʻōnaehana pilikia.physics.ʻO Ed.B 4, 2612–2620 (1971).
Kapko V., Drabold DA, Thorp MF Hoʻolālā uila o kahi kumu hoʻohālike maoli o ka graphene amorphous.physics.State Solidi B 247, 1197–1200 (2010).
Thapa, R., Ugwumadu, C., Nepal, K., Trembly, J. & Drabold, DA Ab initio modeling of amorphous graphite.physics.Kahu Wright.128, 236402 (2022).
Mott, Conductivity in Amorphous Materials NF.3. Nā mokuʻāina kūloko i ka pseudogap a kokoke i nā wēlau o ka conduction a me nā kaula valence.akeakamai.mag.19, 835–852 (1969).
ʻO Tuan DV et al.Nā waiwai hoʻokaʻawale o nā kiʻiʻoniʻoni graphene amorphous.physics.Hoʻoponopono B 86, 121408(R) (2012).
ʻO Lee, Y., Inam, F., Kumar, A., Thorp, MF a me Drabold, DA Pentagonal e paʻi i loko o kahi pepa o ka graphene amorphous.physics.State Solidi B 248, 2082–2086 (2011).
Liu, L. et al.ʻO ka ulu Heteroepitaxial o ʻelua-dimensional boron nitride hexagonal i hoʻohālikelike ʻia me nā iwi ʻaoʻao graphene.ʻEpekema 343, 163–167 (2014).
Imada I., Fujimori A. a me Tokura Y. Metal-insulator transition.Kahuna Mod.physics.70, 1039–1263 (1998).
ʻO Siegrist T. et al.ʻO ka localization o ka maʻi i loko o nā mea crystalline me kahi hoʻololi.Kahukula lahui.10, 202–208 (2011).
Krivanek, OL et al.Atom-by-atom structural and chemical analysis using ring electron microscopy in a dark field.Nature 464, 571–574 (2010).
Kress, G. a me Furtmüller, J. Efficient iterative scheme for ab initio huina ikehu me ka hoʻohana ʻana i nā pūʻulu kumu hawewe mokulele.physics.ʻO Ed.B 54, 11169–11186 (1996).
Kress, G. a me Joubert, D. Mai nā pseudopotentials ultrasoft i nā ala nalu me ka hoʻonui ʻana i ka projector.physics.ʻO Ed.B 59, 1758–1775 (1999).
ʻO Perdue, JP, Burke, C., a me Ernzerhof, M. Ua maʻalahi ka hoʻohālikelike ʻana i ka gradient maʻamau.physics.Kahu Wright.77, 3865–3868 (1996).
ʻO Grimme S., Anthony J., Erlich S., a me Krieg H. Kūlike a pololei ka hoʻohālikelike mua ʻana o ka hoʻoponopono ʻokoʻa hana hoʻopono (DFT-D) o 94-element H-Pu.J. Kemika.physics.132, 154104 (2010).
Kākoʻo ʻia kēia hana e ka National Key R&D Program o Kina (2021YFA1400500, 2018YFA0305800, 2019YFA0307800, 2020YFF01014700, 2017YFA0206300), ka National Natural Science Foundation 18, 18, U3, 19 4001, 22075001, 11974024, 11874359, 92165101, 11974388, 51991344) , Beijing Natural Science Foundation (2192022, Z190011), Beijing Distinguished Young Scientist Program (BJJWZYJH01201914430039), Guangdong Provincial Key Area Research and Development Program (2019B010934001), Chinese Academy of Sciences Strategic Pilot Program, Grant No.0 X0DB Program, Grant No. ʻO ka Frontier Plan of Key ʻepekema noiʻi (QYZDB-SSW-JSC019).Mahalo nui ʻo JC i ka Beijing Natural Science Foundation o Kina (JQ22001) no kā lākou kākoʻo.Mahalo nui ʻo LW i ka Association for Promoting Youth Innovation of the Chinese Academy of Sciences (2020009) no kā lākou kākoʻo.ʻO kahi hapa o ka hana i hana ʻia i loko o ka mīkini paʻa ikaika ikaika o ka High Magnetic Field Laboratory o ka Chinese Academy of Science me ke kākoʻo o ka Anhui Province High Magnetic Field Laboratory.Hāʻawi ʻia nā kumuwaiwai e ka Peking University supercomputing platform, Shanghai supercomputing center a me Tianhe-1A supercomputer.
Эти авторы внесли равный вклад: Huifeng Tian, ​​​​Yinhang Ma, Zhenjiang Li, Mouyang Cheng, Shoucong Ning.
Huifeng Tian, ​​​​Zhenjian Li, Juijie Li, PeiChi Liao, Shulei Yu, Shizhuo Liu, Yifei Li, Xinyu Huang, Zhixin Yao, Li Lin, Xiaoxui Zhao, Ting Lei, Yanfeng Zhang, Yanlong Hou a me Lei Liu
Kula o Physics, Vacuum Physics Key Laboratory, University of Chinese Academy of Sciences, Beijing, Kina
Keʻena ʻepekema ʻenehana a me ʻenekinia, National University of Singapore, Singapore, Singapore
Beijing National Laboratory of Molecular Sciences, School of Chemistry and Molecular Engineering, Ke Kulanui o Peking, Beijing, Kina
Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, Kina


Ka manawa hoʻouna: Mar-02-2023
  • wechat
  • wechat